开发者社区> CV技术指南(公众号)> 正文

CVPR 2022数据集汇总|包含目标检测、多模态等方向

简介: 本文收集汇总了目前CVPR 2022已放出的一些数据集资源。
+关注继续查看

M5Product Dataset


M5Product 数据集是一个大规模的多模态预训练数据集,具有针对电子产品的粗粒度和细粒度注释。


  • 600 万个多模态样本、5k个属性和2400 万个值


  • 5 种模式-图像 文本 表 视频 音频


  • 600 万个类别注释,包含6k个类别


  • 广泛的数据源(100 万商户提供)


c71b5939e9f24b348f25c1aa67d1e175_tplv-k3u1fbpfcp-zoom-1.jpg

Ego4D


在全球 74 个地点和 9 个国家/地区收集的大规模、以自我为中心的数据集和基准套件,包含超过 3,670 小时的日常生活活动视频。使用七种不同的现成头戴式摄像机捕获数据:GoPro、Vuzix Blade、Pupil Labs、ZShades、OR-DRO EP6、iVue Rincon 1080 和 Weeview。除了视频,部分 Ego4D 还提供其他数据模式:3D 扫描、音频、凝视、立体、多个同步的可穿戴相机和文本叙述。

aed0654571fd4670a493005248968c5d_tplv-k3u1fbpfcp-zoom-1.jpg

Daily Multi-Spectral Satellite Dataset


DynamicEarthNet 数据集包含每日 Planet Fusion 图像,以及两年内全球 75 个地区的每月土地覆盖类别。七个土地覆盖类别以时间一致的方式手动注释。还提供了 Sentinel 2 图像。该数据集是第一个大规模的多类和多时态变化检测基准,我们希望它能促进地球观测和计算机视觉领域的多时态研究新浪潮。

1e1875cbb02042ad976e302aa8e60a74_tplv-k3u1fbpfcp-zoom-1.jpg欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读


VCSL (Video Copy Segment Localization) dataset


与现有的受视频级标注或小规模限制的复制检测数据集相比,VCSL 不仅具有两个数量级的片段级标记数据,16 万个真实视频副本对包含超过 28 万个本地复制片段对,而且涵盖各种视频类别和广泛的视频时长。每个收集的视频对中的所有复制片段都是手动提取的,并附有精确注释的开始和结束时间戳。

69dcc259ac954699baa744bd68700433_tplv-k3u1fbpfcp-zoom-1.jpg

Rope3D


Rope3D目标检测数据集是首个同时具有图像和点云3D联合标注的大规模、多视角的路侧数据集,共50009帧图像数据以及对应的2D&3D标注结果。基于该数据集,可以进行路端单目3D检测任务的研究。

06034d54d6914c15ac6c13606fd246ee_tplv-k3u1fbpfcp-zoom-1.jpg

EDS 数据集


EDS 数据集针对由机器硬件参数引起的难以察觉的域间偏移问题研究,包含了来自 3 台不同 X 光机器的 14219 张图片, 其中 10 类物品, 共计 31655 个目标实例,均由专业标注人员进行标注。


FineDiving


本数据集收集了奥运会、世界杯、世锦赛以及欧锦赛的跳水项目比赛视频。每个比赛视频都提供了丰富的内容,包括所有运动员的跳水记录、不同视角的慢速回放等。

我们构建了一个由语义和时间结构组织的细粒度视频数据集,其中每个结构都包含两级注释。


对于语义结构,动作级标签描述了运动员的动作类型,步骤级标签描述了过程中连续步骤的子动作类型,其中每个动作过程中的相邻步骤属于不同的子动作类型。子动作类型的组合产生动作类型。在时间结构中,动作级标签定位运动员执行的完整动作实例的时间边界。在此注释过程中,我们丢弃所有不完整的动作实例并过滤掉慢速播放。步骤级标签是动作过程中连续步骤的起始帧。

75da99935ac3463cafb8b87942e101ee_tplv-k3u1fbpfcp-zoom-1.jpg

PIAA 数据库


个性化图像美学评估 (PIAA) 由于其高度主观性而具有挑战性。人们的审美取决于多种因素,包括形象特征和主体性格。现有的 PIAA 数据库在注释多样性方面,特别是在学科方面受到限制,已不能满足日益增长的 PIAA 研究需求。为了解决这一难题,我们对个性化图像美学进行了迄今为止最全面的主观研究,并引入了一个新的具有丰富属性的个性化图像美学数据库(PARA),该数据库由 438 个主题的 31,220 张带有注释的图像组成。PARA 具有丰富的标注,包括 9 个面向图像的客观属性和 4 个面向人的主观属性。


efe77338ea6d42edaedc9c133bc43c08_tplv-k3u1fbpfcp-zoom-1.jpg

欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。


CV技术指南创建了一个免费的知识星球。关注公众号添加编辑的微信号可邀请加入。

版权声明:本文内容由便宜云服务器实名注册用户自发贡献,版权归原作者所有,便宜云服务器开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《便宜云服务器开发者社区用户服务协议》和《便宜云服务器开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
CVPR 2023 | 多个扩散模型相互合作,新方法实现多模态人脸生成与编辑
CVPR 2023 | 多个扩散模型相互合作,新方法实现多模态人脸生成与编辑
13 0
ICLR 2023 | 初探AI拼图模型预测蛋白质复合物结构
ICLR 2023 | 初探AI拼图模型预测蛋白质复合物结构
9 0
NeurIPS 2022 Spotlight|生成式语义分割新范式GMMSeg,可同时处理闭集和开集识别
NeurIPS 2022 Spotlight|生成式语义分割新范式GMMSeg,可同时处理闭集和开集识别
4 0
有效融合语言模型、图神经网络,文本图训练框架GLEM实现新SOTA
有效融合语言模型、图神经网络,文本图训练框架GLEM实现新SOTA
15 0
DALL-E和Flamingo能相互理解吗?三个预训练SOTA神经网络统一图像和文本
DALL-E和Flamingo能相互理解吗?三个预训练SOTA神经网络统一图像和文本
10 0
CVPR 2022 | CNN自监督预训练新SOTA:上交、Mila、字节联合提出具有层级结构的图像表征自学习新框架
CVPR 2022 | CNN自监督预训练新SOTA:上交、Mila、字节联合提出具有层级结构的图像表征自学习新框架
16 0
深度学习/自动驾驶数据集大集合(目标检测/图像分割/语义分割/图像分类/)
深度学习/自动驾驶数据集大集合(目标检测/图像分割/语义分割/图像分类/)
58 0
【Pytorch神经网络理论篇】 33 基于图片内容处理的机器视觉:目标检测+图片分割+非极大值抑制+Mask R-CNN模型
目标检测任务的精度相对较高,主要是以检测框的方式,找出图片中目标物体所在的位置。目标检测任务的模型运算量相对较小,速度相对较快。
37 0
【论文速递】EMNLP2022-随机模态缺失情况下的多模态情感分析
【论文速递】 EMNLP2022-EMMR:Mitigating Inconsistencies in Multimodal Sentiment Analysis under Uncertain Missing Modalities
217 0
ECCV2022 | 多任务SOTA模型!分割/深度/边界/显著图四项任务
本文提出了一种新的端到端倒金字塔多任务Transformer算法(InvPT),以在统一的框架中同时对多个空间位置和多任务进行建模。
113 0
+关注
CV技术指南(公众号)
欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、最新论文解读、各种技术教程、CV招聘信息发布等。关注公众号可邀请加入免费版的知识星球和技术交流群。
文章
问答
视频
文章排行榜
最热
最新
相关电子书
更多
纯干货 | 机器学习中梯度下降法的分类及对比分析
立即下载
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载
相关实验场景
更多


http://www.vxiaotou.com